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Following a iong period in which little interest was expressed ia 
mechanistic accounts of motor control, an emerging concern with 
theories of cognition encnuraged the development of motor theories 
that drew heavily on information processing and representational con- 
cepts @dams 1971; Pew 1970; Schmidt 1975). These attempts at 
explanation were presumably diiven by a preference for the deductive 
scientific strategy that a theory of mechanism allows (Casti 1989) but 
they raise a concern about the problem of infinite regress in that they 
assume a mechanism that incorporates the detail to be explained 
(Kugler 1986). In addition, serious questions can be raised about their 
biological plausibility, 

Ira accordance with Casti (1989) we take the position that a theory of 
mechanism is desirable or even essential for the study of human 
behavior. Our interest is in the Cevelopxneni oI  a theory of human 
action f ~ r  which the origin and evolution is biologically plausible. A 
specific concern is with nomination of the semantic primitives. How 
can n mechanism for intelligent or organized behavior evolve without 
an a p. :ori description of that behavior being provided by an external 
agent? Biological plausibility and nomination of semantic primitives 
are, ive believe, foundational issues for the modeling of a mechanism 
that can support human action. 

The energing discipline of Parallel Distributed Processing offers the 
possibility of a solution. Proponents claim that their modds are bio- 
logically plausible and that semantic primitives are not inserted into the 
system by the theorist (Smolensky 1988). It has been claimed that the 
approach constitutes a paradigm shift (Schneider 1987), and it is one 
that might be its effectively applied to human action as to human 
cognition. In particular, we view organized human activity in a percep- 
tual-motor workspace as supported by a style of cognition which is 
conceptually nc different to the style of cognition generally envisioned 
within the connectionist literature. From that perspective, those inter- 
ested in mechanisms underlying the organization of human movement 
should profit from understanding what is going on. In this paper we 
review fundamental concepts that drive some of the connectionist work 
and evaluate their use by theorists involved in connectionist modeling. 
In addition, we consider the more general value of those concepts in 
the study of human behavior. 



One central theme to Parallel Distributed Processing (PDP) is that of 
self-organization. Roscnblatt's 'vision of the human information 
processing system as a dynamic, interactive, sdf-organizing system Iies 
at the core of the PDP approach' (PvfcCIeUand et al. 1987: 42; in 
reference to RosenbIatt 1959, 1962). Self-organizing systems are neces- 
sarily dynamic and interactive. Thus we are left with the issue of what 
it means to be self-organizing. A second significant theme running 
through PDP is an appeal to themadynamic law as a source of 
analogies for cognitive process. What is to be gained by delving into 
thermodynamic law that is nut already well enuugi covered in other 
contempora~y accounts? Furthermore, is it satisfactory for a new 
scientific thrust to be based on analogy? 

In this paper we will explore several issues. The first is the concern 
within the connectionist literature for micro and macro descriptions 
and the mapping between them. The second is the use of thermody- 
namic law in cognitive theorizing. We will contrast coding versus 
heating as principles for the emergence of order from disorder within 
the context of self-organization and will explore the notion of an 
associative memory. Finally, we will contrast the roles of analogy and 
law as a basis for scientific progress. 

bvds of description 

The goal of PDP is to offer 'computationally sufficient and psycho- 
logically accurate mechanistic accounts of the phenomena of human 
cognition' (McClelland et al. 1987: 11; Ballard 1986: 67). To that end 
connectionists are primarily concerned with the micro (mechanistic) 
structure of cognition although they recognize that macro (phenome- 
nal) processes influence behavior. In particular, there is a regard for 
emergent phenomena that could never be predicted or understood from 
an isolated description of the micro structure but can be understood in 
terms of interactions within the micro structure (Rumelfmart and Mc- 
Clelland 1987: 128). In the PDP view, entities referred to at the macro 
level of behavior are approximate descriptions of emergent properties 
of the micro structure (McClelland et al. 1987: 12). 
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I t  is to be hoped that the meanings of these statements have not been 
distorted out of context, because we now wish to make some subtle but 
important distinctions about the nature of description. At a single level, 
there can be alternate forms of description; more detailed, more 
abstract, Dr merely based on a different language or concepts. There 
can also be alternate descriptions between levels. Classical reduction- 
ism supposes that macro phenomena can be described in more detail at 
a mcro level and if the micro concepts are available there is little to be 
gained from description at the macro level. According to this view the 
study of macro behavior results in an alternate description of tem- 
porary value to be replaced by neurological, and possibly physical and 
chemical descriptions when enough is known at the micro level. 

A contrsasting view is that descriptions at the micro and macro levels 
are complementary (Pattee 1979); that is, they mutually enhance each 
other but are not fundamentally reducible one to the other. Accurate 
descriptions at both macro and micro levels plus knowledge of how the 
micro phenomena map into the macro phenomena (and, in a self- 
organizing system, how macro and micro states interact) are essential 
to understanding mechanisms that result in organization at the macro 
scale. From this perspective the PDP enterprise seems well motivated. 
Nevertheless, clarification has been offered here because a considera- 
tion of macro states does not always appear to impose any significant 
constraints on PDP theorists (e.g., Smolensky 1987) and there is the 
occasional implication that an understanding of interactions within the 
micro structure is sufficient for a fd l  understanding of cognition 
(Rumelhart and McCleiland 1987: 128). 

Bet ween -scale mappings 

The view developed in this paper is that a consideration of both 
micro and macro levels is crucial. They are complementary and irre- 
ducible descriptions. Neither can be deemed the more fundamental or 
primary and neither can serve as an approximate description of the 
other. Furthermore, an important key to furthering understanding of a 
(cognitive) mechanism lies in exploration of the mapping between the 
two levels (fig. I). Lucid and accurate descriptions are required at both 
levels before the mapping problem can be solved. It would seem, 



MACRO - MICRO 
IMERAMlONS 

MICRO STATES 
Fig, I.  Natural phenomena may be described at multiple levels or scales. In the classical 
reducoioniso view tlnm are alternate descriptions with the micro description constituting the 
scientifically more significant level. From the self-organizational persptxtive descriptions at two or 

more levels and knowledge of interactions between levels are essential for full understanding, 

nevertheless, that there are useful (altIasmgh as yet partial) descriptions 
at both the macro level (human behavior) and the micro Ievel (neu- 
rology, biochemistry, etc.). In many developments of PDP models 
connectionists have embarked on the important task of exploring the 
mapping between the two levels. 

Miem and macro c8eseriptions of brain and behavior 

Noman (1987: 534) observes that PDP models treat psychological 
data within constraints imposed by neurological data. This approach is 
consistent with Crick's (1979) view that an explanation of human 
behavior cannot be derived either from psychology on its own or from 
the neurosciences in isolation from psychology. Knowledge from both 
is essential with the further need to understand how the micro states 
and processes studied by the neurosciences are linked to the macro 
behavioral states studied in psychology (fig. 2). For Crick, communica- 
tion theory (which appears to encompass notions of how neuronali 

COGNITION 

DOMAIN OF PSYCHOLOGICAL DATA 

"MIND STATES" 

PROBLEM: WHAT IS THE 
NATURE OF THE MAPPINC ? 

MICRO STATES 
"BRAIN STATES1' 

DOMAIN OF NEUROLOGICAL DATA 

Fig. 2. An important key to understanding cognition Iies in understanding the mapping between 
macro and micro levels. 
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activity is transformed into information and how that information is 
stored and retrieved) provides the appropriate link, while for Norman. 
computational processes fulfill that requirement. 

Crick (1979) has summarized several important constraints for a 
theory of human behavior. One is the nature of the environment and 
our interaction with it; that is the macro description of the events 
under study. Another set of constraiilts is related to structure and 
processes of the central nervous system. The multitude of neurons 
(approximately lo1 ) and connections between them (approximately 
10'~) together with their relatively slow action (in the order of millisec- 
onds) would seem to be essential considerations. A third set of con- 
straints relate to the global characteristics of the neural system; the fact 
that there are precise connectio~as between neurons in some parts of the 
central nervous system and that there are discrete areas in the cortex in 
which activity is of the distributed nature of an associative net. In 
addition, it is necessary to avoid conceptions that rely on the intelli- 
gence of single neurons or a homunculus for explaining the emergence 
of organized (cognitive) activity. 

In mode!ing the micro structure of human behavior it would be most 
desirable to rely entirely on neuroscience rand biochemistry for defini- 
tion of structures and processes. Unfortunately, there are huge gaps in 
our knowledge of the anatomy and physiology af the brain and there 
are enormous teclanical and ethical obstacles to gathering the desired 
information (Crick and Asanuma 1987). The obstacles are so signifi- 
cant that any comprehensive account of the micro structure of cogni- 
tion must postulate a large number of hypothetical structures or 
processes that have no definite support from neuroscience. 

While PDP models are not intended to describe the detailed neural 
implementation of behavior (Rumelhart and McClelland 1987: 138) 
they are said to ble neurally inspired (McClelland et al. 1987: 11; 
Norman 1987: 535) at least to the extent of the multitude of many-to- 
one and one- to-many conmectiarms. A pervading attitude within the 
PDP enterprise appears to be at least approximately consistent with 
Crick's view: BDP models tend to be loosely constrained by some 
established facts of neuroscience while PDP theorists take license to 
supplement the facts with additional processes or structures that have 
no neurological support. The challenge is to motivate from first princi- 
ples the selection of these additional processes. Without first principles 
to bootstrap the selection process, proposed processes can be consid- 
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ered Little more then KipSinese 'just so stories'. For this paper the issue 
we wilt focus on is associative memory: what are its characteristics, 
what are the essential mechanisms, and what first principles might we 
appeal to in constructing an account of it? 

Associative memory 

The essential components of an abstract, computational model of the 
brain can be described in terms of synaptic connections within neural 
networks (Ballard 1986: 67) or an associative memory in which pat- 
terns of activity represent modal states for perceptual and cognitive 
behavior (Baird 2986). An associative memory is a network of intercon- 
nected elements that produce distinctive patterns in parallel outputs 
from patterns of excitation in parallel inputs. The macroscopic pattern 
of a modal state reflects the mass action of microscopic neurai events 
throughout the associative memory. bowledge resides in the pattern 
of neural connectivity rather than in any single neuron or group of 
neurons or in any feature processing subsystems. 

The parallelism of the system is important from the timing point of 
view. If transitions between cognitive (macroscopic) states are as fre- 
quent as two or three per second (McClelland et al. 2987: 12; Ballard 
1986: 67) and the transitions between neuronal (microscopic) states 
require several milliseconds, serial processing will be too sluggish. Thus, 
the concept is of an associative network that responds to different 
inputs by settling into distinctive but distributed states. The strength of 
the connectivity between elements and the subtle interactions between 
activation and inhibition rules determine the reliability of the settling 
state in response to specific inputs. Presumably cognition is based on 
the assembly and disassembly of macroscopic patterns of activity at 
rates that range at different levels of orgarhation from a few per 
second to a few per lifetime. 
In a neural network there are probably a co~ntless nlrrnher of 

potential modal states. Through learning or experience, some of these 
will become preferred states (solutions) in that they are the ones most 
likely to be activated during normal activity. We assume that a large 
number of latent preferred states can coexist within a neural network 
although that large number will be considerably smaller than the 
countless number of pre-existing potentialities. We further assume that 
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only one modal state is active at any one time, and that a neural 
network progresses through cycles of activation 4 deactivation -+ 

activation. . . and so on. These asszlmptisns about associative memory 
appear to be generally consistent with prevailing connectionist views. 
Crucial issues for this view are h.aw specific modal states acquire their 
preferred status and, once several are established, how a state rnigh, ioe 
selected and re-selected for activation. 

Simulated annealing: Crysial formation as an optimum solutias2 

One regularity accounted for by Thermodynamic Law is the tend- 
ency, noted by McClelland and Rumelhast (1988: 701, 'for all physical 
systems to evolve from highly energetic states to states of minimal 
energy', This is an approximate characterization of Boltzman's ordering 
principle which specifies that the direction of natural change within an 
isolated system is towards a state of maximum homogeneity. lit is the 
principle behind the order-fromncooling analogy, as exemplified in 
crystal formation, which has been inspirational for PDP modelers as a 
means of showing how a neural network might settle into a modall state 
or how it might achieve an optimum solution (e.g., Hinton and Sejnow- 
ski, 1987; Hopfield and Tank, 1986; Srnolensky 1987). 

For the crystal formation analogy it is important to appreciate that a 
reduction in thermal agitation reduces mollecular kinetic energy. Some 
of that klnetic energy is lost to the surround and the lower level of 
thermal agitation also permits some potential energy, which is stored 
within molecular bonds, to be given up and lost to the surround. The 
most orderly state is one that ends up at the lowest (minimum) 
potential energy state. Thus, a pure crystalline substance (regular 
molecular pattern) is in a minimum potential energy state (lattice 
configuration) and can be said to offer an ideal solution (symmetric 
lattice). An impure crystalline substance is one in which the alignment 
of the lattice pattern is noqdentical throughout the crystal. Potential 
energy is low; it is minimized in local regions, but it is not minimized 
globally. This could be referred to as a monoptimum solution. In some 
circumstances it might be viewed as a near-optimum solution and in 
others, as an error. 

A pure crystal can be obtained by first heating the substance to 
break the crystalline bonds and then applyirAb an appropriate cooling 
schedule. With careful cooling (i.e., slow reductions in temperature over 
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the critical range at which the crystal forms), a portion of the substance 
will, by chmce, crystalEize first, and adjacent portions wilt take on the 
same structure. That structure will thereby permeate through the sub- 
stance. This  type of careful cooling is termed cmneahg', fn contrast, 
rapid cooling (or "quenching') will precipitate crystal formatiorr in 
different portions sf the substance at the same time. The orientation of 
the crystalline structure will. not be identical throughout, The meeting 
of different orientations in the structure constitutes an impurity or an 
intersection at which energy is not mjin5mum. Thus, potential energy of 
the crysta! lattice is minimized Iocdily ira most parts of the crystal but it 
is not minimized globally. 

Computational temperatare 

It is this capacity of molecular configurations to locate globally 
~ p f h u m  solutions in ~mfiguration spaces having mimy thnsusmds of 
local minima that has guided the devel~pment of some BDP models. 
Such systems with many local solutions competing with a global 
solution are referred to as frustrated systems. Computational tempera- 
ture (fig. 3), as an analog to thermodynamic temperature, is reduced 
slowly over the critical range so that the system settles into a hasmoni- 
ous' or "minimum energy state' (Hopfield m d  Tank 1986; Smolensky 
2987). This minimum energy state is also characterized as an attractor 
state (McClelland and Rumelhart 1988; 70). Nevertheless, it shsuId be 
noted that this system does not learn; there is no residue from the 

PDP 
ASSL)CIAME MEMORY 

W R O  STATES 
GLOW (ENSEMBLE) PATERNS 

HARMONY, MINIMUM ENERGY 

CONSTRAINT SATISFACTION 
COMPUTATIONAL TEMPERATURE 

LOCAL PhVERNS 

Fig. 3. Many PDP models account for the mapping between macro and micro levels by constraint 
satisfaction. 
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achievement of an optimum state that will help the system locate that 
same state more easily on a subsequent heating and cooling cycle. 

Constraint satisfaction 

One welcome feature of the PDP apprctach is that some models have 
sought to deal with the issue of how a preferred state can be selected 
for activation (reco~nized) without the need for an a priori global or 
macro-state reference (i.e., an internal representation, a set point, or 
homunculus). As is evident from the crystal formatim analogy, one 
approach taken is to minimize or maximize a natural global (macro) 
process within the system by ordering its elements (fig- 3). Smolensky 
(1987) has chosen to maximize harmony within the network (i.e., to 
achieve a maximally self-consistent state), while Hopfield and 'P'ank 
(1986) have chosen to minimize computational energy. There is no 
crucial distinction to be made between maximization and minimization 
approaches which can bath be thought of as resulting in optimization 
via constraint satisfaction. 

In essence, the problem is one of ensuring that a regular input can 
reliably produce the same activation state but one that differs from 
states produced by other inputs. A beginning siaie of randarn activity 
in which elements of the model are stochastically activated is assumed. 
The level of random activity is used to define a eonaputational tempera- 
ture. At a high computational temperature the random activity is so 
high that a regular input cannot exert any ordering influence. As 
computational temperatwe is lowered the level of random activity is 
also reduced and the regular input can start to exert its influence. The 
excitatory and inhibitory connections interact with the mput to guide 
the system towards the desired state. As temperature is ftirther lowered 
random activity ceases and the system becomes frozen in a final state. 

The decrease in computational temperature must be scheduled care- 
fully. A sudden decrease ('quenching') may locate part of the system in 
a stochastically determined minimum that is a locally (but not a 
globally) optimum solution.. Carefully scheduled cooling (simulated 
annealing) can result in the system settling into a global optimum. 
Under the appropriate schedule the regular or coherent input gradually 
establishes its 'nRlnence over the disorganized activity of the system in a 
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manner tbzt results in convergence onto a globally defined optimum 
state (Metropolis et al, 1953). 

Solutions as attractor states 

Terminology from nonlinear dynamics is occaslonalIy employed in 
the connectionist literature (e.g., Baird 1986; Hopfield and Tank 2886; 
Skarda and Freeman 1587). When sh system settles on a solution it can 
be said to converge onto an attractor I .  The initial conditions from 
which the system converges onto an attractor are within the basin of 
that attractor, and the entire set of initial conditions that leads to 
convergence on a given attractor constitutes the basin for that attractor, 
Multiple attractors coexist in some systems. The selection of an attrac- 
tot state, although a deterministic function of the initial conditions, is 
often difficult to predict because of limitations in measurement of the 
initial conditions. In particular, the difference between initia1 condi- 
tions that are in the basin of one attractor versus another can be so 
small that it cannot (even in principle) be measured reliably and the 
system trajectory can be said to be infinitely sensitive to initial condi- 
tions. 

Categorical perception 

One intriguing aspect of this terminology for psychology is that i t  
may be used as a description of categorical perception. Initial condi- 
tions in the form of stimulus infomlation, that may be discrirr;inated 
with the assistance of special instrumentation, are classified as identical 
by the unaided human perceptunl process. Thus, the terminology of 
attractor states represents an alternate style of description for behavior 
that is often described in terms of tem~lates, schernas, or internal 
models. 

An analogy from Baird (1986) for categorical perception is that of a 
flexible buckling column with a deformable collar. A vertical column 
will remain straight with the addition of a downward force until a 
threshold is reached, when it will buckle or bow to an extent de- 

' An eltractor defines an invariant solution shared by multiple trajectories originating from 
different initial conditions. It is a global symmetry tbnt relates local trajectories. 
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termined by the force. The column can buckle in any direction. The 
precise direction taken is determined by micro fluctuations in the 
column at the time that the vertical force exceeds the threshold re- 
quired to initiate the buckle. The collar will be deformed by the buckle 
and more deformations can be created by releasing and reapplying the 
vertical force. Nevertheless, a buckle in the general direction of an 
existing deformation will not create a new impression but will, instead, 
be captured by the existing deformation. Where once behavior (the 
direction of buckling) was unconstrained it is now constrained to 
discrete states that depend on pikr experience. A memory has been 
created and that memory may be described succinctly In terms of 
aultigle latent attractors. 

Priigogine'n principle: Order through heating 

The crystal fozmation analogy may be viewed as drawing on an 
order-through-cooling principle to explain emerging organization in a 
cognitive system. We now return to our earlier discussion of micro and 
macro descriptions so that we may contrast 'order through cooling' 
with 'order through heating'. Specifically, in many closed and open 
systems, flows of energy (closed systems) or of energy and matter (open 
systems) can create a spontaneous transition from one ordered state (or 
from an homogeneous state) to a new ordered state in a manner that is 
not consistent with Boltzman's ordering principle. 

The Rayleigh-Benard instability offers a classic example of a closed, 
self-organizing system in which order arises out of a heating process 
(Haken 1981; Berge et al. 1984). A homogeneous layer of thermally 
expansive fluid, if heated uniformly, dekeleps ii regular structure of 
thermal convection rolls with parallel, horizontal axes. As the fluid is 
heated from below, a vertical te~npsrature gradient is created and the 
lower layers of liquid expand to become less dense. At small tempera- 
ture gradients the tend::ncy for the lower and lighter (less dense) 
portions of the liquid to be displaced by the upper, heavier (more 
dense) portions is resisted by the dynamic viscosity (friction) of the 
liquid. At this temperature only heat conduction occurs. Once the 



temperature gradient becomes sufficiently strong, heat conduction is 
replaced by convection of matter resulting in the formation of convec- 
tion rolls. Some usefur impiications concerning the; rare of macro-micro 
interactions can be drawn from the order-through-heating principle as 
manifested in the Rayleigh-Benard instability. 

A symmetry-breaking nonlinearity 
The first is that the motion threshold of the temperature gradient is a 

nonlinearity produced by a competition between forces, Thermal farces 
compete with gravitational and viscous forces for control over the 
matter transport. The convection rolls (circular matter transports) 
emerge when the temperature gradient generates sufficient f w e  to 
overcome the gravitational and viscous forces. Ban general terms, the 
system response to a gradual increase En temperature gradient is 
wnmonotonic. A symmetry break occurs at a threshold temperature 
gradient. One state (in this case a homogeneous or disordered one) 
transitions suddenly into a qualitatively differentstate. Prior to alre 
symmetry break the system response is linear in that an increase in 
temperature gradient has a monotonic effect on thermal. forces. The 
abrupt transition to a qualitatively different state represents a nonlin- 
ear transition which is then followed by another region sf linear 
behavior. More complicated patterns may emerge when further symme- 
try breaks occur at higher temperature gradients. 

Micro-macro acttor? 
A second insigbt to be drawn from the convection example is that a 

trmsition from homogeneity to structure (a symmetry break) is under- 
stood more clearly by disiinguishing the micro from the macro states. 
At first, heating increases molecular thermal agitation in the micro 
states which, in turn, increases the kinetic energy exchanges between 
molecules (conduction) without changing the lattice configuration of 
tlre homogeneous macro state. It is these forces which lead to thermal 
expansion and thus to the reduced density of the heated liquid, that 
have an important role to play in breaking the symmetry of the 
homogeneous lattice configuration by initiating and then sustaining the 
molecular transports forming the convection rolls (the new macro 
state). The rolling motions are sustained by the temperature gradient 
that occurs because the liquid at the bottom of the vessel gains heat 
while the liquid at the top loses it to the environment (fig. 4). 
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CONVECTION 
THE R'OLWON OF' ORDm IN A CLOSED SYS?EM 

MACRO SATES 
C O H E R E S  MATIER, ENERGY, 
AND M O M W I  TRMJSPORT$ 

SYMMFTRY BREW 
(W MICRO FLUCw.9T!ONS) 

MICRO STATES 
THERMAL (MOLECULAR) AGRATION 

Fig. 4. Order in a closed system evolves through a spontaneous symmetry breslk initiated by micro 
EIuctuations and sustained by competition between heating and cooling processes. 

Macro selection via micro fluctuations 

Ia a ~'e~tmgular  vessel the awes of the convzction ~rslk are parallel to 
the sh~rter pair sf sides. The direction of motion alternates between 
adjacent rolls but the motion of a specific roll may, when viewed in 
cross section, be clockwise or cou~aterclockwise. The selection of a 
direction is made by a fluctuation at the time of transition from 
homogeneity to order. With the increase in thermal agitation portions 
of liquid are displaced in random fashion. At one moment, by a chance 
fluctuation, more will be displaced in a direction that favors one 
pattern over the other. At low temperature gradients such fluctuations 
are damped out. At the critical gradient a fluctuation generates a mini 
roll that enslaves other nearby elements in that direction of modon. 
The progressive ensla=~ement moves quickly th-ough the Iiquid to 
establish the convective transport pattern. This is n process that can be 
referred to as a spuptancous break in the symmetry of the homoge- 
neous state. 

Macro-micro srctio~ 
Because the pattern has two equiprobable states the system is said to 

bifurcate at the transition from homogeneity to order. That transition 
point is known as the point of bifurcation (see fig. 5). The directional 
charactepistic of the macro patmn is thus led by a stochastic fluctua- 
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f i g .  5. The bifurcation diagram for the Rayleigh-Benard convection. Rdc is the Rayleigh number 
(a di~nensionless number) prc portions! to the ratio sf the dynamic viscosity of the liquid and 
tentperttaure gradient. 9 is ahrl velocity of a specific roll. In an experiment free of imperfections, 
the rolls engendered at RUp have equal probability of rotating in either direction, This is expressed 

by tho existence of two branches denoted by 9, and 6,. 

tion at a micro level; a micro-macro action. However once selected, the 
macro pattern emlaves the micro snotions via a macro-nlicro action, 
The macro organization ensures that one of the previously equiprob- 
able patrcrns now dominates system behavier. 

One feature of convection not fourid in crystal formation is the 
coe~istence of multiple ideal solutions. However, like crystal formation, 
there is no residue that can be classified as memory and to achieve that 
we must turn to an example of an open system in which there are flows 
of mattek as weEi as of energy. 

Sebf-orgilnizati in open system 

The periodic assembling of a nest by a population of social insects 
lasing pheromone gradients provides an illustration of how generic 
symmetry breaking and selection mechanisms can fu~~ction in a biologi- 
cal system, la summary of an account by Kugler and Turvey (1987; 
also see Deneubourge 1977; and Grasse 1959). African termites are 
known to construct nests from their waste deposits. After an initial 
random-deposit phase they commence construction of pillars. With 
some frequency, neighboring pillars can take on a mutual curvature 
towards a virtual inidpoint so that an arch is constructed. This is 
followed by the construction of a dome over the supporting pillars and 
arches, and then a new construction cycle of pillars, arches, land a dome 
may begin (fig. 6). This structure becomes the nest in which the 
termites live and breed. The construction involves the coordination of 
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Fig. 6. A building cycle commencing with a random deposit phase and proceding through pillar 
construction, arch construction, dome construction and a retun! to the random deposit, where the 

cycle may start again (addpted from Kugler and Turvey 1987). 

several million essentially identical elements (the termites) without the 
benefit of rules or of a plan. 

.4 symmetry-breaking nonlinearity 
Construction starts with disorganized behavior in which termites fly 

through an area leaving behind waste deposits which contain a chem- 
ical pheromone that attracts other termites. Although the potency of 
the pheromone decays relatively quickly the frequency with which 
insects fly within their detection threshold of the pheromone field from 
an active site before it decays will, if a sufficient number of insects 
participate, become relatively high. Insects that fly within their percep- 
tual threshold of an active site will change their flight trajectory to pass 
over that site and will deposit waste on it. Thus, a small number of 
preferred deposit sites can begin to emerge. 
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NEST BUILDING 
M E  NnUJRQN OF ORDER IN AN OPEN MSfU( 

Fig. 7. ?'he autocatalytic cycle of pillar wnstruction by social insects (adapted from Kugler and 
Turvey 1987). 

Micro-macro action 
The locations of the preferred sites are selected through fluctuations 

in individual flight trajectories at the micro scale (of individual insects). 
Once a particular site is selected an autocata!ytic reaction enslaves the 
ensemble of insects to form a macroscopic flight pattern organized by 
the pheromone diffusion field (fig. 7). The result is the formation of 
pillars of waste at preferred sites. 

Emergence of a higher-order pattern 

Arches begin to form when the pheromone fields of neighboring 
pillars strengthen (in terms of insects' perceptual thresholds) to the 
point that they begin to overlap. A mutual interaction between two 
sites can have a biasing effect that results in deposits accumulating 
more rapidly on the proximal sides of the two sites. Curvature in the 
pillars fcllows which may result in the two pillars eventually meeting to 
form an arch. Thus, another threshold is crossed and a new macro 
property emerges. When several pairs of pillars meet new field proper- 
ties emerge which result in the construction of a roof. 

Macro selection via micro Jlucttcatiorzs 
As in the Rayleigh-Benard instability the specific macro pattern of 

sites that emerges from homogeneity is selected by virtue of stochas,tic 
fluctuations within the micro processes (a micro-macro interaction). A 



threshold is manifest that identifies a functional boundary separating a 
nonequilibrium relaxational dynamic from a 'far-from-equilibrium' 
self-organizing dynamic (cf. Prigogine and Stengers 1984). In the equi- 
librium condition insect behavioxs are independent of one another, In 
the far-from-equilibrium condition the behaviors of individual insects 
are highly coordinated. 

Macro- rrzicro action 
There is no requirement for the individual elements to communicate 

with each other although it might be said that information is fed back 
to individual elements from the macro 'level of organization via the 
pheromone field. 'Flhe organization is by virtue of the mutual coherence 
of behavior; in particular the interactive dynamic of the termite sensory 
apparatus (micro) and the pheromone information field (macro). 
Through this process a mi22i. pattern of organizing centers is assern- 
bled and this pattern, once established, effectively organizes the flight 
trajectories of individual insects (a macro-micro action). 

Towards an (open systems account 08 cogrtai~sn 

Dissipative structures 

Patterns created from the changing balance of forces as induced by 
flows of energy (or of energy and matter) are known as dissipative 
structures (Prigogine and Stengers, 1984). Essentially, dissipative struc- 
tures are new forms of order that emerge via state transitions when 
energy flows exceed the dissipative capacity of an existing structure. 
They emerge as a result of the instabilities produced in existing 
structures by those high rates of energy flow. The continued viability of 
a dissipative structure is maintained by these flows through the system 
with one causal influence residing in the forces that dissipate some of 
the energy into activity at the micro scale. 

The continuous flow of energy is critical. If termites were con- 
strained from flying through an area for a time the pheromone fields 
would decay and the pattern of organizing centers would be disassean- 
bled. Similarly, if the heat source is removed from beneath a thermally 
expansive liquid the convection rolls will decay and the system will 
return to the homogeneous state of stable equilibrium. 



CCosed versus open systems: Fbws of mcrtter and creatitiosl ~ , f  memory 

There is, however, an important distinction to be made between the 
convection and nest constmctian systems. In contrast to a: closed 
system (e.g., the Rayieigh-Benard instability), an open system (e.g., nest 
construction), does not return to the homogenaouls state at cessation of 
the energy (and matter) flows, There is a physical instantiation of the 
organization (the nest structure), which results specifically because of 
the open (versus the closed) nature of the system. This physic*! 
instantiation (which will eventually be tom down by Second Law 
processes) continues to constrain the flight trajectories of the insects as 
they fly through the nests and might be viewed as a memory of the nest 
building activity. Bertalanffy (1975) has argued for an open-systems 
account of biological processes (including cognition) and here we 
extend his arguments by observing that a principled account for the 
origin of symbolic, rate-independent constraints normally characterized 
as memory can be found in the dynamic, rate-dependent (Second Law) 
processes of open systems. 

Self-organization: A nonrepresen fational account 

Self-organization is characterized by transitions to new states of 
order in the absence of any a priori material embodiment (occupancy 
of physical degrees of freedom) that specifies or represei~ts a set point, 
representation, template, or schema in the medium from which the 
pattern is constructed or in the input to the system; that is the heat 
flow or the temperature gradient 'in convection or the transport of 
energy and matter by termites in the construction of nests (contrast 
with fig. 8). Furthermore, there are no special purpose elements. Haken 
(1981) attributes the emergence of structure to an order parameter; in 
essence an activity that enslaves other activity 2. There are, however, 
constraints that may be viewed as control parameters; for example 
some character'istics of a convection pattern are determined by the 
shape of the holding vessel and perceptual thresholds determine the 
value of the order parameter that induces autocatalytic amplification of 

A self-evident example of an order parameter at work is found in an avalanche. A rolling 
boulder imparts its motion to other boulders that join the system, i,e,, the motion of one boulder 
enslaves the motion of others. 
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Fig. 8. Artifactual-machine sohution for the constnmtion of an arch. The long range correlation 
required for the cooperative building of the arch is accomplished by a small scale blue-print (plan, 
frame, schema, etc.) of the large scale project. The actions of the individual workers are 
constrained according to restrictions specified in the blueprint. External regularity is intimately 
tied to internal regularity of the blueprint. Of particular importance is the fact that the blueprint 
must exist prior to and independent of the actual constluctian. In general it takes an agent (i.e., an 
architect) more complicated than the phenomenon being explained to account for the origin of the 

blueprint (adapted from Kugler 1986). 

fluctuations in termite nest construction. Nonlinearities (thresholds, 
switches, hysteresis, damping, inertia, saturation) abound in self- 
organizing systems and are influential constraints on the emergence of 
order and on its final state. 

Although some characteristics of an emergent order are unpredict- 
able (for example, the particular sites selected for tamite nest construc- 
tion) the forms that emerge can be recognized as characteristic of the 
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system. Nevertheless not anything is possible. The emergent properties 
remain bounded within a range of possibilities. Termites may build 
pillar- or arch-lik structures but they may not build representations of 
artifacts such as the lattice work found in the Eiffel Tower or the 
detailed features of the Statue of Liberty. This feature of open systems 
may also be seen as characteristic of human cognitive behavior; essen- 
tially unpredictable in detail but bounded within a range of identifiable 
patterns. 

Generic mechanisms .for seif-organization 

A comprehensive explanation of the emergence of structure from 
homogeneity (or the transition from one ordered state to another) 
requires a macro description of the structure (tbe emergent properties), 
a micro description of elemental activity, and some consideration of the 
mapping (or the interaction) between the micro and the macro states. 
Xn particular, appreciation of fluctuations in the micro structure is 
essential for understanding a bifurcation (i.e., selection). %he emer- 
gence of new macro properties in a self-organizing system can be said 
to result from nonlinear transitions induced by amplification of 
fluctuations in the micro structure when the system is forced Ear from 
equilibrium (Brigogine and Stengers 1984: eh. 6). Organization emerges 
in the absence of any prior representation of that pattern either in the 
input, the medium, or rules that mag micro to macro states and, once 
established, that organization serves to constrain system behavior. 
Again, explanation is aided by descriptions of both macro and micro 
states and an understanding of how the interaction of cooperating and 
competing forces can lead to a nonlinearity which, in turn, leads to a 
creation of fiew forms not specified in the micro structure. 

Emergence sf ordeff: Cm1ing versus beating 

The statement by McClelland and Rumelhart (1987) that all physical 
systems tend to a minimum energy state is generally correct but 
misleading in the sense that, as is evident from a consideration of 
dissipative structures, local fluctuations can produce local increiwss in 
energy that create new states of order. The states of unstable equi- 



lik>rium that are achieved in the self-organizing systems described above 
might also be viewed as solutions in the sense of the term as used in 
Boltzman, Harmony, and simulated annealing models. There is, how- 
ever, a distinction to be drawn. One type of scrlution is achieved 
through heating and the other is achieved through cooling. 

Ow the surface, the distinction between tlhe two processes may not 
seem to amount to much. Carefully scheduled cooling leads to a 
singular and optimum state (a state of stable equilibrium) with a high 
probability. That state can be disassembled and reassembled by reheat- 
ing the system and then allowing it to resettle by cooling with the 
possibility that it will settle into a different state. Heating can also lead 
to an ordered state (one of unstable equilibrium) which can be disas- 
sembled and then reassembled first by cooling and then by reheating. 
The coolling and reheating may allow the system to settle onto a new 
state via inverse bifurcation. 

There are, however, some noteworthy differences. For systems that 
organize by increasing energy flows there appear to be solutions within 
solutions. This is found in the Rayleigh-Benard convection in which 
new pat terns emerge as the temperature gradient is increased, eventu- 
ally giving way to chaos. I[t is cllso found in tenmite nest construction 
where a first solution is elaborated into a new and distinctive one. In 
particular, this example suggests that the elaborated solution retains 
much of the character of the first but also has additional distinctive 
features. It might be characterized as a higher-order solution or, in 
Gibson's (1979) terms, a higher-order invariant. In some systems the 
elaboration of solutions can proceed through a considerable number of 
bifurcations before there is a transition to chaos (e.g., predator-prey 
relationships as modeled by the logistic equation, May 1976). 

There is another important objection to applying the sudden emer- 
gence of orderly structure in the phase transitions that accompany 
cooling to the phenomena of cognitive processes. As noted by Haken 
(1981 : 41-42) 'life processes slow as temperature drops; in fact they 
stop completely at very low temperatures. Living organisms are kept 
alive by a constant supply of energy and matter which they take up and 
process. The more Eghliy developed creatures (i.e., the warm-blooded 
animals) are not even in thermal equilibrium with their surroundings.' 
Haken concludes that life processes cannot be based on a cooling 
principle. The solutions achieved by heating are maintained only by a 
conennuous flow sf energy (a closed system) or a continuous flow of 



C. Liatern, P.N. Kugler / Sev-organizariotz irr connectionist nrodeis 469 

energy and matter (an open system). In this regard the heating princi- 
ple is more consistent with the realities of bi~togical function. 

In the next few pages we deal with two padlet distributed modds 
that incorporate some self-organizing features. The first is consistent 
with a closed system account and is modeled with celluIar automata 
(Langton 1986). The second is consistent with an open system account 
and is based on EEG data collected from the olfactory bulb of the 
rabbit (Baird 1986). 

Artificiai IliPe: Cognition in 2 dosed system? 

To model i l k s  efitsigebtc;t: of strictare with increasing temperature it 
would be necessary to develop a system in which low temperatures lead 
to macroscopic homogeneity and high temperatures prdduce macro- 
scopic chaos. Interesting properties would have to emerge in the 
intermediate temperature ranges. To be fully consistent with the argu- 
ments o~tfinec? above, those interesting macro properties should be led 
by fluctuations in the micro states but should otherwise be setf-organiz- 
ing. An autocatafytic effect in which micro fluctuations are amplified 
into self-sustaining macro properties is likely to provide the mecha- 
nism. 

Such self-organizing patterns can be found in systems of cellular 
automata. Cellular automata are mathematical models for complex 
natural systems in which there are local interactions between large 
numbers of simple identical components (Wolfram 1984). These sys- 
tems, which are best known through Conway's game of Life (Atkins 
E984), are essentially simulations in which the cells of a matrix can take 
on one of a finite number of states over successive cycles of the 
simulation. Matrices are generally one-dimensional (1 x n) or two-di- 
mensional ( n  x n). A typical two-dimensional automaton may have 
64 x 64 cells with each cell capable of taking on one of eight possible 
states. 

Other important elements of the simulation are a quiescent state, a 
neighborhood, and a transition function. One of the possible cell states 
is defined as a quiescent state to represent nonactivity. A neighborhood 
is a pattern of nearby cells that can be affected by an active cell and 
will generally include the active cell itself. The transition function 
specifies how an active cell affects its neighborhood (i.e., what type of 
states it generates in its surroundings for the next cycle). 



470 G. ki?~rer~s, P.N. Kugler / Sev-orgaanizatzon iti connectionisz modeis 

Seq lorganizafion in ceilulor automata 

A cellular automaton ir~xay be viewed as a massively paallel system 
with local connections. A simulation is started with a seed in which 
some of the cells are switchsd into active states. Because no pattern is 
specified by the transition function any new pattern occurring in 
successive iterations must be an emergent property. The system is 
deterministic in that the same initial conditions and transition function 
will produce the same behavior. The emergence of a structure or 
pattern will constitute a solution in the same sense that the settlin~ of a 
PDP network constitutes a solution. 

Langton's (1984) investigations of artificial life with cellular au- 
tomata are of particular interest. He specified a parameter, I", which 
determined the relative level of neighborhood activity generated on 
successive cycles by an active cell. The r parameter can be viewed as a 
strength determinant for an autocatalytic effect that generates new 
activity from existing activity. That parameter might also be viewed as 
a nieasure of system temperature. 

Order through heating 

Langton started his simulations with a randomly generated transi- 
tion function constrained by I', and a randomly generated seed. For a 
r of zero the activity in the next cycle must, by definition, collapse 
onto the quiescent state. For a non-zero r, activity continued though 
succeeding cycles, but for small r, it quickly collapsed onto the 
quiescent state. Beyond some threshold, activity continued in a self-sus- 
taining mode. As F was iacreased from that threshold the generated 
activity progressed through the stages of emergent fixed ur propagating 
single states, several species of emergent periodic propagating struc- 
tures that met to interactively generate new fixed or periodic structures, 
and finally chaos. In Langton's words, 'For low r temperatures we 
observe precipitate-like behavior where everything is stable and nothing 
changes, while for high temperatures we observe the behavior of a hot 
gas where everything changes and nothing is stable. For temperatures 
in between, where we have the chance of both stability and changeabil- 
ity, we observe more interesting dynamics9 (P986:128). The 'more 
interesting dynamics' result in structures of sufficient complexity and 
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variety that they might mirror the generative complexity of a relatively 
simple cognitive system, 

~omputadionai temperature 

Langton's simulations suggest a rnodel in which the cognitive system 
woks most effectively over a narrow range of computational temper's- 
tures. Low temperatures lead to relatively low levels of inactivity and 
simple patterns. Higher levels of activity and more complex patterns 
are obtained by increasing computational temperatures, The variations 
in the metastable regimes between the stable quiescent state (at Iow 
temperatures) and the chaotic state (at high temperatures) generate the 
most interesting and creative activity. Increases in computationali tem- 
perature lead to increasingly complex patterns until the system breaks 
down by transitioning into chaotic activity. It is in this metastable 
region prior to chaos that the mapping from micro states to macro 
behavior remains cohererrt yet is suffieientty complex to pose a chal- 
lenge to understanding the nature of that mapping. 

Learning and memory 

In our initial presentation of the required features Ibr associative 
memory we noted that the system must be able to generate ordered 
states from homogeneity but that it must also be able to select those 
emergent states more readily on subsequent occasions (that is it must 
learn). One challenge that remains for the cellular automata model is to 
show that the system can learn. Possibly as a function of repeated 
exposure to inputs or to repeated activation of the system the transition 
function might evolve from one that produces no ordered states to one 
that produces useful patterns. ~angtoi ' s  system is, however, a model of 
a closed system and, from the perspective of our earlier discussion, 
flows of matter as well as of energy (i.e., an open system) must be 
modeled to pewit the emergence of a memory. 

Order from disorder in neum/I networks: C~gniticoate in rn opn system? 

An associative memory model proposed by Baird (1986) has distinc- 
tive spatial patterns of neural activity representing modal states for 
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distinctive recognition and response behaviors. The empirical data that 
underlie this model are EEG recordings collected by Freeman and his 
associates from the olfactory bulb of the rabbit (see Freeman and 
Skarda 1985; Skarda and Freeman 9987). The problem faced in this 
work was to isolate distinctive patterns of behavior that could serve to 
identify invariant odor classes. 

Associative memory in the olfactory bulb 

The EEG recordings showed that odor recognition is accompanied 
by space-time patterns of peak RMS neural activity distributed 
throughout the bulb. Skarda and Freeman (1987) concluded that every 
neuron in the olfactory bulb participated in every discrimination, and 
that discrimination between odors was based on the assembly of 
different patterns of neural intensity during inhalation. Baird (1986) 
took this as evidence that the olfactory bulb has no feature processing 
subsystems and can best be described as an associative memory in 
which the emergent spatial inhomogeneity results from the pattern of 
stsengt hs in synaptic connections. 

The fact that different space-time patterns of peak RMS activity are 
generated in response to different odors is suggestive of behavior like 
that modeled with the interactive activation and competitive networks 
of McClelland and Rumelhart (1988). In those networks a single 
pattern of connections will settle into different states based on the 
pattern of input strengths. The emergence of different patterns depends 
considerably on the interaction between excitatory and inhibitory 
prsccssef (fig. 2). By virtue of this interaction a number of different 
latent states can coexist within the same set of connections. In the 
olfactory bulb these constitute the set of latent activity patterns that 
represent the odor memories or the invariant odor classes to be 
recognized. 

From observations on the olfactory buib Baird (1986) developed a 
view of the entire cortex as a set of associative memories intercon- 
nected in parallel. Some of the challenges for this view are to specify 
how a specific pattern of activity is selected, how the system transitions 
between states, how activity permeates through the system to select 
particular sets of patterns in the various associative memories that 
correspond to particular behaviors, how to account for both the rapid 
changes between some cognitive states and the relatively long- term 
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persistence of others, and how new patterns (including the first) are 
established. 

Self-organization in the oafactor)? bulb: Order thrcltdgh heating 

The recognition of a learned odor is postulated to occur via a process 
of order emaging from disorder, or pattern from homogeneity as in the 
Rayleiglt-Benard convection. EEG data show a brief transition from 8 
low-level state of irregular activity to the high amplitude pattern 
associated with a specific odor. Thus, recognition occurs in an associa- 
tive memory when the system is driven from a homogeneous state of 
low-level, stochastic neural activity beyond the threshold of stability, 
through a bifurcation which places it in the basin of an attractor. 
Within the olfactory bulb the order parameter that produces the 
symmetry break via the bifurcatior, is thought to be the higher energetic 
state that accompanies inhalation. More generally the order parameter 
may be associated with energy dissipation through the system; that is 
the rnetabolization of glucose transported by blood flows (Iverson 
1979: 70). 

Macro selection of odor basins via biasing inptsks 

Given the existence of multiple latent states in close competition 
some mechanism is required for reliable selection of an appropriate 
modal state. In a system such as the Rayleigh-Benard convection the 
order parameter drives the system to the point of bifurcation where a 
stochastic fluctuation is amplified to lead the system into a new modal 
state. Within an associative memory stochastic fluctuations presumably 
have some effect but for reliable classification of inputs those inputs 
must act as low energy biases to lead the system into the required 
attractor basin as it is forced from its state af stable equilibrium. In 
that sense the model employs a mechanism that permits an adaptive 
versus a spontaneous symmetry break from the homogeneous state. 

Transitions between odor basins 

A reset mechanism is required to allow the system to settle into 
different modal states that constitute recognition of different inputs 
Baird (1986) suggests relaxation back to the resting state via inverse 
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bifurcation. While he discounts the possibility of a catastrophic transi- 
[,on induced by an input fluctuation as a mans s f  placing the system 
in a different attractor basin such catastrophic transitions are found in 
many physical systems. This would, however, require a higher level d 
input energy than is required for selection of a w w  state via the inverse 
bifurcation route. 

Whether input changes can produce energy fluctuations needed for 
catastrophic transitions is unknown but such a process would be 
consistent with the problem solving experience of transitioning sud- 
denly from an incorrect to a correct solution while continuing to 
maintain a high level of effq; . Transitions via iiiverse bifurcation 
would be more like the Frocess of achieving a correct solution by 
putting the problem to one side for a time. Inverse bifurcation and 
catastrophes are not mutually incompatible processes and both may 
have a role to play. 

Categorical odor perception 

The appeal to attractors and basins of attraction aliws inputs to be 
characterized as noisy or incomplete versions of an attractor. Different 
inputs that drive the system into the same attractor basin (and the 
number of these is potentially infinite) and therefore cause the system 
to collapse onto the same attractor will be classified as identical. This 
view of how the macro response of an associative network is assembled 
is consistent with recent discussions of categorical perception (e.g., 
Harnad 1987). In addition, Skarda and Freeman (1987) have observed 
the occasional failure to recognize odors. This appears to result in a 
disorderly or chaotic attractor that cannot be classified, and may 
generally be associated with indecision (Baird 1986). 

Emergence of distributed, high-order patterm 

Given a system of multiple, interconnected associative networks, the 
output from one system that ~omistitutes an input for a second system 
can influence the state of the second system by pushing it into a 
different attractor basin. It is by this process that change can permeate 
through the system and that different combinations of associative 
states can emerge. As each and every associative network within a 
mature adult will have multiple latent states the potential combina- 
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torial wmpIexity is eaormous. A reasonabEe extension of Baird's iqev:s 
would have some associative networks (e.g., those most directly con- 
nected to the environment) transitisning between states at a relativek 
high rate (2 to 3 times per second). Others (e.g., those that influenck 
persistent goal-directed activity) age likely to transition between states 
much less frequently, possibly at interds of minutes, hours, days, and 
years. 

Learning and d$ferentiation 

The differentiation of attractors is accomplished viz the modification 
, 

of the coupling within the network. As is consistent with learning rules 
employed iil PDP, excitatory connections may be strengthened by 
concurrent activity. The pxtic~dar pattern established for a new input 
is most IikeIy an arbitrary function of the particular peaks in stochastic 
activity at the time of input arid of the activity generated by the inpnr. 
Where specific inputs are repeated with sufficient frequency, patterns 
will emerge once connection strengths exceed a critical threshold much 
in the manner that an arbitrary pattern emerges in the termite nest-con- 
struction field. Once connection strengths have been established the 
input activity must emergc as a more powerful lead in the direction 
taken by the subsequent activity within the network, 

Nevertheless, the EEG data of Skarda and Freeman ('6987) indicate 
that patterns are not fixed. On return to a previousIy learned odor 
(apparently some weeks later) the patten could differ from the one 
previously evoked by that odor. In general, the learning of a new odor 
appeared to result in dynamic reconstruction of the whole patterned 
response set. It is this process of dynamic reconstruction that may 
permit progressive differentiation of stimulus information. 

Rssocicrtive memory as a dissipative structure 

Baird's associative memory model may be viewed as connectionist 
but as one that avoids soms of the major difficulties we see in the 
general trend of PDP modeling. It addresses the problems of mappings 
between micro and macro states in a manner consistent with the 
principles of self-organization. Baird's view of cognitive process as 
based on dissipative dynamics provides a perspective that we view as 
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critical to a model of cognition that heeds the realities of biological 
prczesses. 

Learning and memory 

The central nervous system is open to flows of both energy and 
matter. Hn ehat sense it is more like the termite nest construction system 
than like any of the other thermodynamic systems we have discussed in 
this paper. Not only is it possible to select mdai  staies but experience 
can create a preferred status for particular states. That is, a state that 
has been achieved once can be achieved more easily in the future. 'Fhis 
is a general characteristic of open systems; residues accumulate as 
evidence ~bf past dynamic activity. 

A viable associative memory system must have mechanisms that 
permit macro states to be selected and assembled on a first occasion 
and that allow some fraction of the potential states to emerge with a 
preferred statr;~ as a result sf learning. It must have a mechanism fop 
selection ehat may be part stochastic, but should be responsive to 
external input, and it must have a mechanism for cyclically assembling, 
disassembling, and reassembling macro states. We find that closed 
systems (Hopfield and Tank 1986; Langtct~r "1%; Smolensky 1987), 
and open systems (Baird 1986; Kugler and Turvey 1987) all exhibit 
some of the necessary features but an open systems theory as promoted 
by Bertalaraffy (1975) and further developed by Prigogine and his 
co!leagues (e.g., Prigogille and Stagers 1984) shows most promise for 
simultaneously satisfying all requirements. 

The use of termite nest construction as a paradigmatic example of 
self-organization in an open system has value in that it is possible to 
identify mechanisms that lead to m~cmscopic order. Our discussion of 
termite nest constmctian allowed us to isolate the roles of stochastic 
fluctuation, perceptual sensitivity, and autocatalytic symmetry breaking 
as they act through successive orders of organization. This example also 
illustrates the nature of memory as a physical instantiation of a 
symbolic, rate-independent process with its origins in a dynamic, 
rate-dependent process. 
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h i d ' s  (1986) account shows that mulltipie preferred states can be 
established and can continue to coexist within the same distributed 
network. Given the relatively meager knowledge about the functioning 
of neural networks it is not possible to provide a clear account of the 
mechanisms involved in the emergence of preferred states from the 
multiple pctentialities, in their assembly, disassembly and reassembly, 
s r  in their selection. A primary claim advanced here is that whatever 
the mechanisms they will be consistent with an open systems view. 

Our view IS h clear contrast to one offered by Johnson-Laird (1983; 
393-406) who views self-organization as characteristic of noncognitive 
or nonanticipatcsry systems. He argues that cognitive activity relies on a 
high-level, representational model of the world; one that is based in an 
arbitrary symbolic notation. Nevertheless, self-organization is not anti- 
theticd to anticipation or intention (Shaw and Ensella-Shaw 1988) 
and one primary ckinr for this paper is that a self-organizational 
acc~v-t of cognition deserves serious consideration. 

Rdes versus laws 

Organization may be achieved via the implementation of rules that 
specify how degrees of freedom are to be constraincd. The serial, digital 
computer accomplishes this by representing the desired outgrlt in the 
program code. Connectionists argue that their systems self-organize 
which implies that the features of organization in the macro behavior 
are not represented in the program code. Nevertheless a connectionist 
system has to be apprcbpriately tuned for it to generate interesting 
behavior. For example, the inhibitory and excitatory processes of an 
Interactive Activation-Calmpetition network (McCleUand and Rumel- 
hart 1988) must be set appropriately for the system to model even 
simple forms of human perceptual or judgmental behavior. For such a 
network to provide a compelling explanation of human behavior some 
principled basis for selecting the architecture and its parameters (i.e., 
the symbolic constraints) must be established. 

The construction of termite nests is influenced by dynamical jaws. It 
is  presumably possible to develop a nrle-based simulation of termite 
nest construction in which the appropriate macro properties were 
specified but what such a sirnula6on would offer in terms of under- 
standing or explanation is not clear (fig. 9). Similarly, a rule-based 
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SCIENTIST'S PROBLEM? 

9 ENGIMEER'S SOWTION! 

Flg. 9. The modeling problem. A rule-based simulation d an organized behavior does not clarify 
the nature of the mechanisms that underlie the organization. 

simulation of cognition is unlikely to be enlightening. We need an 
approach to modeling that honors lawful dynamical processes. No 
rule-based system that establishes control through rate-independent 
symbolic processes can provide a compelling model of human cognitive 
behavior without a principled account of the origin of those rules. 
Additionally, there needs to be some account of how the appropriate 
rules could produce complex patterns of organization the details of 
which are not specificical!~ represented in the code. We propose that the 
most likely source is in the dynamic rate-dependent processes that are 
given explressisn in the Esmulation of natural laws. 



It is acknowledged, within the connectionist literature, that thermo- 
dynamic law is exploited for the analogies ' it offers the study of 
cognition (Hopfield and Tank 2986; Woman 1987; Smolensky 1987). 
Indeed, tEe use of a freezing principle to describe the process of 
achieving a stable cognitive state must be viewed as an aialogy because 
actual freezing of a biological system would lead to death. However, 
our reference to termite nests should not be taken as analogical. This is 
a prototypicai example of self-organization in a biological system. The 
value of referring to termite nest conetmction when the concern is 
specifical2y with cognition is that it is possible to explore interesting 
facets of biological self-organization and to generate interesting hy- 
potheses prior to the more chalfenging task of exploring self-organiza- 
tlon in neural systems. 

It would be a mistake to view the application of thermodynamic law 
by Maken (2981), Atkins (2984). or Prigogine and Stengers (2984) to an 
explanation of self-orgarization in physical or behavioral systems as an 
analogy. In their terms, thermodynamic law is a description of univer- 
sal and natural regularities that have causal potency. It is in the Second 
Law that lies the seeds of change. The Second Law is behind the 
examples of self-organization that have been outlined in this paper and, 
for some, it accounts for the creation and decay of all structure in the 
universe (Atkins 1984; H a k n  1982; Prigogine and Stengers 1984). The 
Rayleigh-Benard convection is an ordered structure that is created by a 
dissipative dynamic. Similarly, the pattern of organization in the termite 
pheromone field is sustained by a flow of energy and matter as is 
consistent with the Second Law (Deneuhourge 1977). These systems 
may be contrasted to a digital computer which i s  a dualistic machine; 
energy fiows serve to sustain the machine in a state that maintains its 
capability for work but the energy flows have no influence on the 
nature of the symbolic processing. 

The patterns that emerge from the influence of the Second Law are 
referred to as dissipative structures (Prigcagirme and Stengers 1984), 

Most Frequently referred to as metaphor in the PDP literature. A metaphor is an elegant and 
creative expression of an idea; a figure of speech (e.g., the cat i s  out QI the bag), while an analogy 
expresses similarity on some dimension. Analogy is the correct characterization of thermodynamic 
principles as employed in PDP modeling for the simulation of cognition. 
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which in effect are local abatements of entropy (disorder, homogeneity). 
Dissipative strUuctures are Nature's sleight of hand; they are local 
structures in which order is created in a manner that speeds the global 
progress towards universal entropy. Kugler and Turvey (1987), fa 
whom cognition is also a dissipative structure, employ the Second Law 
of thermodynamics as a Iaw in contrast to an analogy, and are in 
concert with Atkins (19841, Haken (198'1)' and Prigogine and Stengers 
(1984) in viewing it as universally responsible for order. From that 
perspective the Second Law has certain imperatives that cannot be 
ignored. Any account of cognition that is not consistent with the 
Second kaw is necessarily f awed. 

On the other hand, the use of thermodynamic law as a source of 
analogies carries no such irnperatlves. The value of an analogy lies in its 
heuristic potential and in the ability of the user to exploit that poten- 
tial. Analogies offer considerable freedom. They may be exploited in 
any way they are found to be useful and much of the value of a specific 
analogy may stem from the creativity of the user rather than from rile 
intrinsic power of the analogy. Nevertheless, the freedom offered by the 
use of analogies can also be viewed as a lack of constraint and this may 
account for the seemingly arbitrary proliferation of PDP models. 
Cognitive science has relied Plcavily on analogies in the past; a strategy 
that may have contributed to a situation in which it is vulnerable to the 
charge that. 'each new experimental finding seems to require a new 
theory' (Norman 1987: 535). It is nevertheless ironic that this charge 
emerges froan the connectionist literature because the arbitrary prolifer- 
ation of models is one glaring problem with the PDP enterprise. 

The claim offered here is that analogy is a poor basis for a paradigm 
shift, or even for a scientific thrust (also see Bertalanffy 1968: 84-85). 
There is no doubt that analogy can be useful h i  gerwidiing or corn- 
mumicatirag ideas, understanding, or hypotheses, but the development 
of any scieistific endeavor must ultimately be based on laws. To 
relegate laws to a subsidiary tole will lead to unprincipled distinctions 
and theoretical elaborations that contribute little to the progressive 
conssruction of a useful body of knowledge. 

Connectionists, by their concern with self-organization, micro and 
macro states, and the mapping between them have introduced a vaI- 



uabJe emphasis to the study of human bekravior;, Consideratiosr of the 
mapping between micro and macro states is essentiaf to the under- 
standing of complex, nonlinear systems, of which humans, collectively 
or individually, are prime examples. An appeal to self-organization 
offers arr: alternative to classical reductionism and, when understood in 
detail, a soluf on to the homunculus problem. Nevertheless, the view of 
self-organization presented in the PDP literature is limited, particularly 
in the nature of the physical examples that guide the modeling efforts. 
While computational temperature would appear to provide an effective 
order parameter for the emergence of structure in cognition, the reli- 
ance on a heating principle for the emergence of diverse and creative 
patterns of behavior will be more productive than refiance on a cooling 
principle. The concept of a dissipative structure within the framework 
of an open systems account has much to offer the study of associative 
memory or of cognition. 
En addition, analogy is a precarious basis for a paradigi-ir shift, or 

e-icrr for the less anrbitiozs tasks of aheorizlng and model devel_npment. 
The use of thermodynamic law as a solrrce of analogies denies the 
imperatives that would flow from giving it full force as a lawful basis 
for the emergent structure of cognition. A lawful account of cognition 
based on thermodynamic law is likely to avoid the unprincipled pro- 
liferation of explanations and models and is likely to lead to a more 
coherent development of our science. The challenge remains to turn 
these ideas into an account of the human behaviors that are central to 
adaptive functioning in a complex world. This is a challenge that the 
dominant forces in 100 years of experimental and cognitive psychology 
have so far failed to tackle in any substantive way. 
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